Home > Knowledge > Content

In Earth's atmosphere

Jan 11, 2017

Carbon dioxide in Earth's atmosphere is a trace gas, currently (early 2016) having an average concentration of 402 parts per million by volume (or 611 parts per million by mass). Atmospheric concentrations of carbon dioxide fluctuate slightly with the seasons, falling during the Northern Hemisphere spring and summer as plants consume the gas and rising during northern autumn and winter as plants go dormant or die and decay. Concentrations also vary on a regional basis, most strongly near the ground with much smaller variations aloft. In urban areas concentrations are generally higher and indoors they can reach 10 times background levels.

The concentration levels of carbon dioxide have risen due to human activities since WWII. Combustion of fossil fuels and deforestation have caused the atmospheric concentration of carbon dioxide to increase by about 43% since the beginning of the age of industrialization. Most carbon dioxide from human activities is released from burning coal and other fossil fuels. Other human activities, including deforestation, biomass burning, and cement production also produce carbon dioxide. Volcanoes emit between 0.2 and 0.3 billion tons of carbon dioxide per year, while human activities emit about 29 billion tons.Carbon dioxide is a greenhouse gas, absorbing and emitting infrared radiation at its two infrared-active vibrational frequencies (see the section "Structure and bonding" above). This process causes carbon dioxide to warm the surface and lower atmosphere while cooling the upper atmosphere. Increases in atmospheric concentrations of CO2 and other long-lived greenhouse gases such as methane, nitrous oxide and ozone have correspondingly strengthened their absorption and emission of infrared radiation, causing the rise in average global temperature since the mid-20th century. Carbon dioxide is of greatest concern because it exerts a larger overall warming influence than all of these other gases combined and because it has a long atmospheric lifetime (hundreds to thousands of years).

Not only do increasing carbon dioxide concentrations lead to increases in global surface temperature, but increasing global temperatures also cause increasing concentrations of carbon dioxide. This produces a positive feedback for changes induced by other processes such asorbital cycles. Five hundred million years ago the carbon dioxide concentration was 20 times greater than today, decreasing to 4–5 times during the Jurassic period and then slowly declining with a particularly swift reduction occurring 49 million years ago.

Local concentrations of carbon dioxide can reach high values near strong sources, especially those that are isolated by surrounding terrain. At the Bossoleto hot spring near Rapolano Terme in TuscanyItaly, situated in a bowl-shaped depression about 100 m (330 ft) in diameter, concentrations of CO2 rise to above 75% overnight, sufficient to kill insects and small animals. After sunrise the gas is dispersed by convection during the day. High concentrations of CO2 produced by disturbance of deep lake water saturated with CO2 are thought to have caused 37 fatalities at Lake MonounCameroon in 1984 and 1700 casualties at Lake Nyos, Cameroon in 1986.Human-made carbon dioxide (CO2) continues to increase above levels not seen in hundreds of thousands of years. Currently, about half of the carbon dioxide released from the burning of fossil fuels remains in the atmosphere and is not absorbed by vegetation and the oceans.