Home > Knowledge > Content

Process of Extrusion

Dec 22, 2016

The process begins by heating the stock material (for hot or warm extrusion). It is then loaded into the container in the press. A dummy block is placed behind it where the ram then presses on the material to push it out of the die. Afterward the extrusion is stretched in order to straighten it. If better properties are required then it may be heat treated or cold worked.

The extrusion ratio is defined as the starting cross-sectional area divided by the cross-sectional area of the final extrusion. One of the main advantages of the extrusion process is that this ratio can be very large while still producing quality parts.

Hot extrusion

Hot extrusion is a hot working process, which means it is done above the material's recrystallization temperature to keep the material from work hardening and to make it easier to push the material through the die. Most hot extrusions are done on horizontal hydraulic presses that range from 230 to 11,000 metric tons (250 to 12,130 short tons). Pressures range from 30 to 700 MPa (4,400 to 101,500 psi), therefore lubrication is required, which can be oil or graphite for lower temperature extrusions, or glass powder for higher temperature extrusions. The biggest disadvantage of this process is its cost for machinery and its upkeep.

Cold extrusion

Cold extrusion is done at room temperature or near room temperature. The advantages of this over hot extrusion are the lack of oxidation, higher strength due to cold working, closer tolerances, better surface finish, and fast extrusion speeds if the material is subject to hot shortness.

Materials that are commonly cold extruded include: lead, tin, aluminum, copper, zirconium, titanium, molybdenum, beryllium, vanadium, niobium, and steel.

Examples of products produced by this process are: collapsible tubes, fire extinguisher cases, shock absorber cylinders and gear blanks.

Warm extrusion

Warm extrusion is done above room temperature, but below the recrystallization temperature of the material the temperatures ranges from 800 to 1800 °F (424 to 975 °C). It is usually used to achieve the proper balance of required forces, ductility and final extrusion properties.