Home > Knowledge > Content

Uses of Carbon dioxide

Jan 11, 2017

Carbon dioxide is a significant greenhouse gas. Since the Industrial Revolution, anthropogenic emissions - including the burning of carbon-based fossil fuels and land use changes (primarily deforestation) - have rapidly increased its concentration in the atmosphere, leading to global warming. Carbon dioxide also causes ocean acidification because it dissolves in water to formcarbonic acid

In the chemical industry, carbon dioxide is mainly consumed as an ingredient in the production of urea, with a smaller fraction being used to produce methanol and a range of other products, such as metal carbonates and bicarbonates.Some carboxylic acid derivatives such as sodium salicylate are prepared using CO2 by the Kolbe-Schmitt reaction.

In addition to conventional processes using CO2 for chemical production, electrochemical methods are also being explored at a research level. In particular, the use of renewable energy for production of fuels from CO2 (such as methanol) is attractive as this could result in fuels that could be easily transported and used within conventional combustion technologies but have no net CO2 emissions.


Carbon dioxide is a food additive used as a propellant and acidity regulator in the food industry. It is approved for usage in the EU(listed as E number E290), US and Australia and New Zealand (listed by its INS number 290).

A candy called Pop Rocks is pressurized with carbon dioxide gas at about 4 x 106 Pa (40 bar, 580 psi). When placed in the mouth, it dissolves (just like other hard candy) and releases the gas bubbles with an audible pop.

Leavening agents cause dough to rise by producing carbon dioxide. Baker's yeast produces carbon dioxide by fermentation of sugars within the dough, while chemical leaveners such as baking powder and baking soda release carbon dioxide when heated or if exposed to acids.


Carbon dioxide is used to produce carbonated soft drinks and soda water. Traditionally, the carbonation of beer and sparkling wine came about through natural fermentation, but many manufacturers carbonate these drinks with carbon dioxide recovered from the fermentation process. In the case of bottled and kegged beer, the most common method used is carbonation with recycled carbon dioxide. With the exception of British Real Ale, draught beer is usually transferred from kegs in a cold room or cellar to dispensing taps on the bar using pressurized carbon dioxide, sometimes mixed with nitrogen.

Wine making

Carbon dioxide in the form of dry ice is often used in the wine making process to cool down clusters of grapes quickly after picking to help prevent spontaneousfermentation by wild yeast. The main advantage of using dry ice over regular water ice is that it cools the grapes without adding any additional water that may decrease the sugar concentration in the grape must, and therefore also decrease the alcohol concentration in the finished wine.

Dry ice is used during the cold soak phase of the wine making process to keep grapes cool. The carbon dioxide gas that results from the sublimation of the dry ice tends to settle to the bottom of tanks because it is denser than air. The settled carbon dioxide gas creates a hypoxic environment which helps to prevent bacteria from growing on the grapes until it is time to start the fermentation with the desired strain of yeast.

Carbon dioxide is also used to create a hypoxic environment for carbonic maceration, the process used to produce Beaujolais wine.

Carbon dioxide is sometimes used to top up wine bottles or other storage vessels such as barrels to prevent oxidation, though it has the problem that it can dissolve into the wine, making a previously still wine slightly fizzy. For this reason, other gases such as nitrogen or argon are preferred for this process by professional wine makers.

Inert gas

It is one of the most commonly used compressed gases for pneumatic (pressurized gas) systems in portable pressure tools. Carbon dioxide is also used as an atmosphere forwelding, although in the welding arc, it reacts to oxidize most metals. Use in the automotive industry is common despite significant evidence that welds made in carbon dioxide are more brittle than those made in more inert atmospheres, and that such weld joints deteriorate over time because of the formation of carbonic acid.[citation needed] It is used as a welding gas primarily because it is much less expensive than more inert gases such as argon or helium.[citation needed] When used for MIG welding, CO2 use is sometimes referred to as MAG welding, for Metal Active Gas, as CO2 can react at these high temperatures. It tends to produce a hotter puddle than truly inert atmospheres, improving the flow characteristics. Although, this may be due to atmospheric reactions occurring at the puddle site. This is usually the opposite of the desired effect when welding, as it tends to embrittle the site, but may not be a problem for general mild steel welding, where ultimate ductility is not a major concern.

It is used in many consumer products that require pressurized gas because it is inexpensive and nonflammable, and because it undergoes a phase transition from gas to liquid at room temperature at an attainable pressure of approximately 60 bar (870 psi, 59 atm), allowing far more carbon dioxide to fit in a given container than otherwise would. Life jackets often contain canisters of pressured carbon dioxide for quick inflation. Aluminium capsules of CO2 are also sold as supplies of compressed gas forairgunspaintball markers, inflating bicycle tires, and for making carbonated water. Rapid vaporization of liquid carbon dioxide is used for blasting in coal mines. High concentrations of carbon dioxide can also be used to kill pests. Liquid carbon dioxide is used in supercritical drying of some food products and technological materials, in the preparation of specimens for scanning electron microscopy and in the decaffeination of coffee beans.

Fire extinguisher

Carbon dioxide can be used to extinguish flames by flooding the environment around the flame with the gas. It does not itself react to extinguish the flame, but starves the flame of oxygen by displacing it. Some fire extinguishers, especially those designed for electrical fires, contain liquid carbon dioxide under pressure. Carbon dioxide extinguishers work well on small flammable liquid and electrical fires, but not on ordinary combustible fires, because although it excludes oxygen, it does not cool the burning substances significantly and when the carbon dioxide disperses they are free to catch fire upon exposure to atmospheric oxygen. Their desirability in electrical fire stems from the fact that, unlike water or other chemical based methods, Carbon dioxide will not cause short circuits, leading to even more damage to equipment. Because it is a gas, it is also easy to dispense large amounts of the gas automatically in IT infrastructure rooms, where the fire itself might be hard to reach with more immediate methods because it is behind rack doors and inside of cases. Carbon dioxide has also been widely used as an extinguishing agent in fixed fire protection systems for local application of specific hazards and total flooding of a protected space. International Maritime Organization standards also recognize carbon dioxide systems for fire protection of ship holds and engine rooms. Carbon dioxide based fire protection systems have been linked to several deaths, because it can cause suffocation in sufficiently high concentrations. A review of CO2 systems identified 51 incidents between 1975 and the date of the report, causing 72 deaths and 145 injuries.

Supercritical CO2 as solvent Liquid carbon dioxide is a good solvent for many lipophilic organic compounds and is used to remove caffeine from coffee. Carbon dioxide has attracted attention in thepharmaceutical and other chemical processing industries as a less toxic alternative to more traditional solvents such as organochlorides. It is used by some dry cleanersfor this reason (see green chemistry). It is used in the preparation of some aerogels because of the properties of supercritical carbon dioxide.