Home > News > Content

Laser Hybrid Process

Dec 13, 2016

For welding metallic objects, the laser beam is focused to obtain intensities of more than 1 MW/cm2. When the laser beam hits the surface of the material, this spot is heated up to vaporization temperature, and a vapor cavity is formed in the weld metal due to the escaping metal vapor. This is known as a keyhole. The extraordinary feature of the weld seam is its high depth-to-width ratio. The energy-flow density of the freely burning arc is slightly more than 100 kW/cm2. Unlike a dual process where two separate weld processes act in succession, hybrid welding may be viewed as a combination of both weld processes acting simultaneously in one and the same process zone. Depending on the kind of arc or laser process used, and depending on the process parameters, the two systems will influence each other in different ways.
The combination of the laser process and the arc process results in an increase in both weld penetration depth and welding speed (as compared to each process alone). The metal vapor escaping from the vapor cavity acts upon the arc plasma. Absorption of the laser radiation in the processing plasma remains negligible. Depending on the ratio of the two power inputs, the character of the overall process may be mainly determined either by the laser or by the arc.
Absorption of the laser radiation is substantially influenced by the temperature of the workpiece surface. Before the laser welding process can start, the initial reflectance must be overcome, especially on aluminum surfaces. This can be achieved by preheating the material. In the hybrid process, the arc heats the metal, helping the laser beam to couple in. After the vaporisation temperature has been reached, the vapor cavity is formed, and nearly all radiation energy can be put into the workpiece. The energy required for this is thus determined by the temperature-dependent absorption and by the amount of energy lost by conduction into the rest of the workpiece. In Laser Hybrid welding, using MIG, vaporisation takes place not only from the surface of the workpiece but also from the filler wire, so that more metal vapor is available to facilitate the absorption of the laser radiation