The Process Of Modern Forge-welding

The Process Of Modern Forge-welding

Dec 07, 2016

Modern forge-welding is often automated, using computers, machines, and sophisticated hydraulic-presses to produce a variety of products from a number of various alloys. For example, steel pipe is often forge-welded during the manufacturing process. Flat stock is heated and fed through specially-shaped rollers that both form the steel into a tube and simultaneously provide the pressure to weld the edges into a continuous seam. Diffusion bonding is a common method for forge welding titanium alloys in the aerospace industry. In this process the metal is heated while in a press or die. Beyond a specific critical-temperature, which varies depending on the alloy, the impurities burn out and the surfaces are forced together. Other methods include flash welding and percussion welding. These are resistance forge-welding techniques where the press or die is electrified, passing high current through the alloy to create the heat for the weld. Shielded active-gas forge-welding is a process of forge welding in an oxygen-reactive environment, to burn out oxides, using hydrogen gas and induction heating.
Titanium alloys are commonly forge welded. Because of titanium's tendency to absorb oxygen when molten, the solid-state, diffusion bond of a forge weld is often stronger than a fusion weld in which the metal is liquefied.
Forge welding between similar materials is caused by solid-state diffusion. This results in a weld that consists of only the welded materials without any fillers or bridging materials. Forge welding between dissimilar materials is caused by the formation of a lower melting temperature eutectic between the materials. Due to this the weld is often stronger than the individual metals.